Phosphorylation of some chromosomal nonhistone proteins in active genes is blocked by the transcription inhibitor 5,6-dichloro-1-beta-D- ribofuranosylbenzimidazole (DRB)
نویسندگان
چکیده
The distribution of rapidly phosphorylated chromosomal proteins between chromosome I, chromosome II + III, chromosome IV, and nuclear sap including the matrix was investigated in salivary gland cells of Chironomus tentans. Chromosome IV, which carries most active nonribosomal genes in the cell, was found to be enriched in four rapidly phosphorylated nonhistone polypeptides (Mr = 25,000, 30,000, 33,000, and 42,000) in parallel with the transcriptional activity rather than with the DNA content of the chromosome. Also the histones H2A and H4 are rapidly phosphorylated but the phosphorylation is proportional to the DNA content of each chromosome sample. The 32P-labeled Mr = 42,000 polypeptide immunologically cross-reacted with an antibody elicited against the transcription stimulatory factor S-II isolated from Ehrlich ascites tumor cells (Sekimizu, K., D. Mizuno, and S. Natori, 1979, Exp. Cell Res., 124:63-72). In addition, indirect immunofluorescence studies on chromosome IV with antisera against the stimulatory factor II revealed a selective staining of the active gene loci. The incorporation of 32P into three chromosome IV nonhistone polypeptides, especially into the Mr = 42,000 polypeptide, was lowered by 70-85% shortly after administration of 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB), a likely inhibitor of heterogeneous nuclear RNA transcription at initiation level. The possibility of a causal relationship between inhibited phosphorylation of chromosomal proteins and blocked transcription of heterogeneous nuclear RNA genes by DRB is discussed.
منابع مشابه
Drug-induced dispersal of transcribed rRNA genes and transcriptional products: immunolocalization and silver staining of different nucleolar components in rat cells treated with 5,6-dichloro-beta-D- ribofuranosylbenzimidazole
Upon incubation of cultured rat cells with the adenosine analogue 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB), nucleoli reversibly dissociate into their substructures, disperse throughout the nuclear interior, and form nucleolar "necklaces". We have used this experimental system, which does not inhibit transcription of the rRNA genes, to study by immunocytochemistry the distribution ...
متن کامل5 , 6 = Dichloro - 1 - # ? - D - ribofuranosylbenzimidazole Inhibits Transcription Elongation by RNA Polymerase I 1 in Vitro
The purine nucleoside analog 5,6-dichloro-l-j3-~-ribofuranosylbenzimidazole (DRB) is a selective inhibitor of transcription by RNA polymerase 11. Although a wealth of in vivo studies have suggested that DRB inhibits transcription by enhancing the premature termination of elongating polymerase molecules, in vitro studies to date have been interpreted to suggest that DRB acts at the level of tran...
متن کاملGene-specific recruitment of positive and negative elongation factors during stimulated transcription of the MKP-1 gene in neuroendocrine cells
MAP kinase phosphatase-1 (MKP-1) controls nuclear MAP kinase activity with important consequences on cell growth or apoptosis. MKP-1 transcription is initiated constitutively but elongation is blocked within exon 1. It is unclear how induction of MKP-1 is controlled. Here, we report that the transcriptional elongation factors P-TEFb, DSIF and NELF regulate MKP-1 transcription in the pituitary G...
متن کاملCDK9 and SPT5 proteins are specifically required for expression of herpes simplex virus 1 replication-dependent late genes
DNA replication greatly enhances expression of the herpes simplex virus 1 (HSV-1) γ2 late genes by still unknown mechanisms. Here, we demonstrate that 5,6-dichloro-1-β-d-ribofuranosylbenzimidazole (DRB), an inhibitor of CDK9, suppresses expression of γ2 late genes with an IC50 of 5 μm, which is at least 10 times lower than the IC50 value required for inhibition of expression of early genes. The...
متن کاملScientific Vision: Setting Forth a Strategy
MAP kinase phosphatase-1 (MKP-1) controls nuclear MAP kinase activity with important consequences on cell growth or apoptosis. MKP-1 transcription is initiated constitutively but elongation is blocked within exon 1. It is unclear how induction of MKP-1 is controlled. Here, we report that the transcriptional elongation factors P-TEFb, DSIF and NELF regulate MKP-1 transcription in the pituitary G...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 98 شماره
صفحات -
تاریخ انتشار 1984